Operating Windows of Pebble Divertor

نویسندگان

  • K. Matsuhiro
  • M. Isobe
  • Y. Ohtsuka
  • Y. Ueda
چکیده

A marked feature of the pebble divertor is an effect by use of functional multi-layer coated pebble, which consists of a surface plasma facing layer, an intermediate tritium permeation barrier layer, and a kernel for heat removal. The dimensions, structure and the irradiation conditions of pebbles are the important issues for the development of the pebble divertor. From the view point of resistance of the induced thermal stress, the pebble is taken as small as possible in size. On the other hand, from the view point of the pumping performance, the suitable irradiation temperature range of the surface layer of pebble was estimated from the experiments and the numerical analysis. The pumping process enhanced by dynamic retention is available to extend the higher allowable irradiation temperature range from 900K to 1100K. As taking the temperature rise limitation due to pumping effect and the fractural strength due to the induced thermal stress limitation, it was found that the diameter of the pebble is possible to be 1-2 mm in about 20 MW/m for the SiC kernel and 2-3 mm in less than 30 MW/m for the graphite kernel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conceptual Design of Pebble Drop Divertor

A pebble drop divertor concept is proposed for future fusion reactor. The marked feature of this system is the use of multi-layer pebbles that consists of a central kernel and some coating layers, as a divertor surface component. By using multi-layer pebbles, pebble drop divertor have the advantages such as steady state wall pumping with low bulk tritium retention. The performance of whole dive...

متن کامل

Pebble: A Component-based Operating System for Embedded Applications

The Pebble operating system is intended to support complex embedded applications. This is accomplished through two key features: (1) safe extensibility, so that the system can be constructed from untrusted components and reconfigured while running, and (2) low interrupt latency, which ensures that the system can react quickly to external events. In this paper we discuss Pebble’s architecture an...

متن کامل

Analysis of Tritium/deuterium Retention and Permeation in Fw/divertor including Geometric and Temperature Operating Features

Available data and mathematical formulations concerning tritium transport in the FW/Divertor with tungsten and beryllium as plasma facing materials were implemented in the commercial code COMSOL Multiphysics. The goal is to develop a CAD-based multiphysics modeling capability so that FW/Divertor temperature and geometric features can be readily taken into consideration while tritium permeation ...

متن کامل

Design Windows for a He Cooled Fusion Reactor*

A design window concept is developed for a He-cooled fusion reactor blanket and divertor design. This concept allows study of a parameter regime under which a possible design exists with different design requirements, such as allowable pumping fraction. The concept identifies not only the required parameter regime, but also investigates the robustness of the design, i.e., the validity of the de...

متن کامل

Fem Modeling of Pebble Bed/structural Wall Separation

This work has developed FEM models of ceramic breeder pebble beds and applied them to two categories of blanket design (edge-on and layer configurations) to predict the thermomechanical behavior of a pebble bed under ITER pulsed operating condition. To explore the pebble bed/structural wall separation phenomenon, a thermomechanical contact is considered using contact elements meshed along pebbl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000